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Chapter 0

Fundamentals

If A is a set and x and element of the set, then x P A, otherwise
x R A. A set with no elements is denoted by ∅, and a set A is
called nonempty if A ‰ ∅. If all elements of a set A are also the
elements of a set B, then B contains A, or A Ă B, therefore A Ă A
and ∅ P A hold trivially. We will often use this property to check
for equality of two sets A and B, i.e., A “ B ô A Ă B and B Ă A.
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Chapter 1

Constructing Reals

Begin with the notion that we already know of the existence of
natural numbers, denoted by N (let us skip Peano’s axioms which
formalize the existence of N). Let us define the set of rational num-
bers Q as Q “ tmn |m,n P N, n ‰ 0u. Note that NrQs are closed
under addition and multiplication, i.e., if a, b P N ñ a ` b P N. It
can also be seen that N P Q by definition.

The notion of sets is to be able to ‘collect’ objects or elements
into a ‘set’, so to speak, so that we can perform set operations
defined in Chapter 0. This provides us with a framework for con-
structing sets, comparing sets (Ă,Ď), and adding (Y) sets together.
However, the elements of the sets themselves are arbitrarily placed
and have no order among them, i.e., if A “ ta0, a1, a2u, we can say
that the element a1 relates to the set A as a1 P A, but we can not
compare the individual elements of the set. In other words, the
elements of the set so far are cardinal, or, forming a set out of the
elements is only assisting us to count them, but not order them in
any manner.
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CHAPTER 1. CONSTRUCTING REALS 5

1.1 Ordered Sets

Consider the operation ‘ă’ on a set S which is defined as follows:

i. For some elements x, y, z P S, if x ă y and y ă z, then x ă z.

ii. If x, y P S, then only one of the three can hold for the elements
x, y, either x ă y, or x “ y or y ă x (that is, x either precedes,
equals, or succeeds y). This is called trichotomy.
Note: By trichotomy, the negation of ‘ă’ is ‘ě’.

The set S together with the relation ă is called an ordered set. Now
that we have ordering in sets, we can talk define bounds, supre-
mum and infimum of sets.

Consider a set E Ă S, where S is an ordered set. If there exists
β P S such that for every element x P E, x ď β, then the value
β bounds the set E from above. Similarly we can define a lower
bound β for the set E if x ě β. If the upper bound β of E satisfies
the additional property that no smaller α ă β exists in S, then
β is called the least upper bound, or β “ supE. Similarly, α is
called the infimum of E, α “ inf E, if α is the greatest lower bound.

Theorem 1.1.0.1 (Existence of supremum). If set E Ă S such
that E ‰ ∅, and is bounded above, then α “ supE exists in S.
Further, if L is the set of all upper bounds of E, then α “ inf L.

The existence of supremum is essentially guaranteed for an or-
dered set if it is non-empty and bounded from above. In other
words, if your nonempty set is bounded from above, I can always
find the least upper bound. For instance, E “ t 1n |n P N, n ‰ 0u.
Clearly E is contained in Q, which is an ordered set, and 1 P E,
so E is nonempty. Further, 1 is an upper bound for E, therefore,
D supE. Also note that 0 bounds E from below, so D inf E as well.
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This gives us a framework to compare elements of an ordered
set, within the set, thereby forming ordinal sets. However, so far I
can only tell if two elements precede, succeed, or equal each other.
But we can perform other operations on these elements if we intro-
duce the concept of fields.

1.2 Fields

A field is a set F with associated operations addition ‘`’ and mul-
tiplication ‘ˆ’ (these notes often omit the operator ˆ to rewrite
aˆ b as ab). The fields are closed under both these operations, i.e.,
if a, b P F , then the result of either operations a ˝ b P F . Axioms
to define addition are:

A1. Closure: If a, b P F , then a` b P F

A2. Commutativity: a` b “ b` a

A3. Associativity: a` pb` cq “ pa` bq ` c

A4. Existence of identity: D 0 P F such that x` 0 “ x@x P F

A5. Existence of inverse: D´x P F such that x`p´xq “ 0@x P F

Similarly, we can define multiplication using:

M1. Closure: If a, b P F , then ab P F

M2. Commutativity: ab “ ba

M3. Associativity: apbcq “ pabqc

M4. Existence of identity: D 1 P F such that x1 “ 1x “ x@x P F

M5. Existence of inverse: D1{x P F such that xp1{xq “ 1@x P F
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Remark 1. Let us begin with the notion of N. Now note that N
is an ordered set. Now if we need to define an operation ‘`’ that
follows axioms A1-A5, we observe that N are incomplete. That is,
if D a P N, then E´a P N such that they add up to the additive iden-
tity. In order to form a closed field under addition, we extend N to
Z. This automatically means that N Ă Z, and integers are closed
under addition. now further notice that if we need to define a multi-
plication operation, Z are closed under it (i.e., M1. is satisfied), but
once again E1{x P Z, x ‰ 0 such that x¨1{x “ 1@x P Z. This admits
an automatic extension to the set S “ t 1n : n P Zzt0uu. This forms
a field S which satisfies M1-M5, but now does not satisfy A1 (con-
sider 1{3,´1{4 P S, but 1{3 ` p´1{4q R S). This clearly demands
and extension to a set Q of the form N “ tpq : p P Z, q P Nzt0uu.
Thus, we get rational numbers if we start with the naturals.

Note that an ordered set is not necessarily a field (example N),
and a field is not necessarily an ordered set (example C, which will
be seen later).

We can prove the following often used properties of addition
and multiplication:

(a1) If x` y “ x` z then y “ z (from A3 and A4)

(a2) If x` y “ x then y “ 0 (from p1; also implies uniqueness of
additive identity)

(a3) If x ` y “ 0 then y “ ´x (from p1 and A4; also implies
uniqueness of additive inverse)

(a4) ´p´xq “ x (apply A5 on ´x)

Very similarly,

(m1) If x ‰ 0, and xy “ yz, then y “ z

(m2) If x ‰ 0, and xy “ x, then y “ 1
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(m3) If x ‰ 0, and xy “ 1, then y “ 1{x

(m4) If x ‰ 0 then 1{p1{xq “ x

Ordered Fields

If a field F is an ordered field if it is also an ordered set and satisfies
the following:

(OF1) x` y ă x` z if x, y, z P F and y ă z

(OF2) xy ą 0 if x, y P F, x ą 0 and y ą 0

A number is called positive if x ą 0 and negative if x ă 0.

1.3 Constructing Reals

It should be noted that the field Q is incomplete. For example, Dp
such that p ¨p “ 2, but p P Q. Consider Rudin’s Example 1.1 which
explains that if A “ tp P Q : p2 ă 2u and B “ tp P Q : p2 ą 2u,
then A has no supremum in Q and B has no infimum in Q. In
order to extend the least upper bound property in Q, we need to
construct R.

Theorem 1.3.0.1 (Real number field). There exists an ordered
field R Ą Q such that R has the least upper bound property.

Sketch of Proof.

Theorem 1.3.0.2 (Archimedean property). If x P R, y P R and
x ą 0, then there exists a positive n P N such that nx ą y

Corollary 1.3.0.2.1. For every x, y P R and x ă y, there exists
some p P Q such that x ă p ă y.

Theorem 1.3.0.3. For every real x ą 0 and integer n ą 0 there
exists a unique positive real y such that yn “ x.
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Corollary 1.3.0.3.1. If a and b are positive reals and n P Z, then
pabq1{n “ a1{nb1{n.

1.4 Complex Field

Definition. A complex number is an ordered pair pa, bq of real
numbers a, b, i.e., pa, bq ‰ pb, aq if a ‰ b.

The set of such numbers is called C. Further defining the spe-
cific addition and multiplication for the field as:

Definition. If x, y P C such that x “ pa, bq, y “ pc, dq, then

x` y “ pa` c, b` dq

xy “ pac´ bd, ad` bcq

Try to prove A1-A5 and M1-M5 for the operations above in the
field C.

Using these definitions, for any real number x, y we have px, 0q`
py, 0q “ px ` y, 0q, and px, 0qpy, 0q “ pxy, 0q. This means that the
multiplication and addition defined in Def. 1.4 automatically sat-
isfy the arithmetic of real number operations. Therefore, we con-
structed C without defining i2 “ ´1, or extending R.

Remark 2. Note that we can easily prove using the definitions
above that for some i :“ p0, 1q, i ¨ i “ ´1, and using that fact
further prove that pa, bq “ a` bi



Chapter 2

Topology

2.1 Mapping

So far we have seen how to construct sets, compare sets, and find
‘relations’ between the elements of set. A natural extension are
functional maps that take entire (sub)sets to different (sub)sets. A
mapping, in this sense, is an abstract function which operates on
sets by taking its individual elements to another set. This way,
functional maps allow us to talk about comparisons of sets, relate
sets, and to transform one set to the other.

Definition. We define a mapping from a set A to a set B by any
relation that takes the elements of A to result in an element of B.
It is denoted as f : AÑ B and for some a P A, a ÞÑ fpaq. Suppose
that f maps a subset E Ă A to a subset V Ă B. Then we call the
image of E under the mapping f as fpEq “ tfpxq|x P Eu Ă B
and the inverse image of V as f´1pV q “ tx P A|fpxq P V u Ă A.

D1. f : A Ñ B is onto/surjective if fpAq “ B. Or, if for any
y P BDx P A such that y “ fpxq. x1, x2 P A, x1 ‰ x2 ñ
fpx1q ‰ fpx2q.

10
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D2. f : A Ñ B is one-to-one/injective if f´1pyq is at most
one point. Or, for any y P BD, at most one x P A such that
y “ fpxq.

D3. f : A Ñ B is called bijective if it is both injective and
surjective.

Cardinality

We need the idea of cardinality so as to compare the sizes of sets.
However, so far we have not restricted our sets to be ‘finite’, or
even defined what it is to be finite. But it should make sense to
say that two sets A and B have the same number of elements, or
cardinality, if I can line them up in a train where one element of A
is next to the other element of B. At the end of this process, we
know that |A| “ |B|. Note that what we did was to find a bijection
between the sets A and B. Therefore,

Definition. If D a bijection f between A and B such that f : AÑ
B, then the two sets have the same cardinality, or A „ B.

The symbol ‘„’ is the equivalence relation and has the following
properties:

(a) Reflexive: A „ A

(b) Symmetric: A „ B ñ B „ A

(c) Transitive: A „ B,B „ C ñ A „ C

2.2 Finite Sets

We denote the set of naturals by N “ t0, 1, 2, ¨ ¨ ¨ , n, ¨ ¨ ¨ u. Jet Jn
denote subsets of N as J1 “ t1u, J2 “ t1, 2u, ¨ ¨ ¨ , Jn “ t1, 2, ¨ ¨ ¨ , nu.
In addition, we denote by J0 “ ∅ and J “ Nzt0u. These subsets of
N allow us to find cardinality of other sets, provided we can find an
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equivalence (or, a bijection) between the set in question and some
J .

Definition. A set E is a finite set if E „ Jn for some n P N.
Further, n is defined to be the cardinality of the set E.
A set F is considered infinite if it is not finite, or if E  Jn for
any n P N.

Countable Sets

E is countable iff E „ Jp“ Nq.
The word ‘countable’ is an unfortunate usage of the English lan-
guage, where it makes more sense to say listable, because if I can
create a list of the elements of E as te1, e2, ¨ ¨ ¨ , en, ¨ ¨ ¨ u, then E is
countable (listable, rather). Note that Z „ N as the elements of Z
can be reordered to form a bijection with N.
A useful corollary is the fact that countable sets are infinite.
An unsurprising definition that follows up is uncountablesets are
sets that are ‘not countable’.

Useful properties

P1. Any infinite set contains a countable subset

P2. Every infinite subset of countable sets is countable

P3. Well-orderedness principle: Every subset of N has a smallest
element

P4. Countable unions of countable sets are countable: More for-
mally,

P4.1 Let A be a countable set and Eα, α P A be countable as
well. Then E “

Ť

αPA

Eα is countable.
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P4.2 If A is at most countable and so is Eα, α P A, then
E “

Ť

αPA

Eα is at most countable.

From the above we can see that the set of rationals Q „ N.
More generally, if Tn denotes the set of all n´tuples such that
each element in the tuple comes from a countable set, then T is
countable.

2.3 Metric Spaces

Consider a set X with an added function d : X ˆ X Ñ R or
px, yq ÞÑ dpx, yq for x, y P X, dpx, yq P R. Then the function d is
called a distance and the set with its associated distance a metric
space if the following hold.

M1. dpx, yq “ 0 ô x “ y (distance between two points is the same
iff the points are the same)

M2. dpx, yq ě 0 (distance is non-negative)

M3. dpx, yq “ dpy, xq (distance is non-directional)

M4. dpx, yq ď dpy, zq ` dpx, zq (taking detours is never better!)

Neighbourhoods

Note that in context of a metric space, we have defined how far you
are from a point p. This admits the definition of an r´neighbourhood
around point p, which is nothing but the set of points at most r
distance from p.

That is, Nrppq fi tx P X : dpp, xq ă ru. Sometimes this is also
called a ball of radius r around point p, denoted by Brppq, as shown
here.
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p

r

Nrppq

Knowing the definition of a neighbourhood around a point, we
can classify points based on these neighbourhoods as (for a point
p P X and a subspace E Ă X):

D1. Interior point: p P X is an interior point of E Ă X if
D r ą 0 such that Nrppq Ă E.

D2. Limit point: p P X is a limit point of set E if every neigh-
bourhood of p has a point q ‰ p, i.e., pNrppqzpq X E ‰ ∅.

D3. Isolated point: If p P E and p is not a limit point, it is
isolated.

Open & Closed Sets

We can also classify a set based on its constituent points as

S1. Complement of a set: If E Ă X, then its complement with
respect to the metric space X is Ec “ tx P X : x R Eu

S2. Open set: If all points of E are interior points, it is an open
set.

S3. Closed set: If every limit point of E is also a point in E,
the set is closed

S4. Perfect set: If E is closed and every point of E is a limit
point, it is a perfect set.
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S5. Bounded set: If DM P R such that upon fixing p P E, dpp, xq ă
M @x P E, E is bounded.

S6. Dense in X: If every x P X is a limit point of E, or a point
of E (or both), E is dense in X.

These definitions are abstractions of open intervals (open set),
closed intervals (closed set), finite intervals (bounded set), ‘sur-
faces’ of a set (closure), holes in an interval (isolated points), etc.
These are very closely related to abstract intervals, to form contin-
uums which are studied in topology. For instance, a limit point is
closely related to sequences, as a limit point can be approximated
by its neighbouring points.

Some properties of open and closed sets to be noted are:

(i) ∅, X are open

(ii) If E Ă X is open, then Ec is closed.
This implies that ∅, X are both closed as well; finite sets are
closed too because they have no limit points.

(iii) If U, V Ă X are open sets, then U Y V is open.
Similarly, if U, V Ă X are closed, then U X V is closed (by
(ii)).

(iv) More generally, if tUαuαPA are individually open @α P A,
then U “

Ť

αPA

Uα is open.

Using (ii), if tUαu’s are all closed for all α P A, U “
Ş

αPA

Uα

is closed.

(v) p is a limit point of E iff Nrppq XE is infinite for any r ą 0.

Definition. If E Ă X, then denote by E1 the set of all limit points
of E, and by sE “ E Y E1. Then sE is called the closure of E.
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The set E is then closed iff E “ sE and clearly, E Ă sE, where
the closure is a closed set. This means that the operation closure(¨)

on a set is idempotent, i.e., sE “ sE. Also, for some Ai Ă X for

some i “ 1, 2, ¨ ¨ ¨ , n (finite),
Ğn
Ť

i“1

Ai “
n
Ť

i“1

ĎAi, which can be proved

by induction.

2.4 Compact Sets

A compact set abstracts the notion of mathematical infinities. Com-
pact sets try to avoid infinities arising in two manners: a) infinite
size of set (unboundedness), and b) infinities due to limit points
not lying in the set (by making them ‘compact’). It is easier to
understand what compactness means for a set by first defining a
compact set, and then seeing relaxing which other properties makes
a set non-compact.

Definition (Open Cover). Consider a set E Ă X. If there exists
a collection of open sets G “ tGαu such that E Ă

Ť

αPA

Gα, then G

is an open cover of E.

Definition (Compact Set). A set E Ă X is compact if every open
cover of E has a finite subcover of E.

So, if I have to prove a set is non-compact, I only need to find
one counter example of an open cover of E that does not contain
a subcover of E. On the other hand, to prove a set is compact is
harder, because every open cover needs to have a finite subcover.
For example, consider E “ t1{n : n “ 1, 2, ¨ ¨ ¨ u, is not compact.
I can easily prove this by considering an open cover of the form
Gn “ p1 ´ 1{n, 1 ` 1{nq, which is a series of shrinking intervals
centred around 1. But the limit point of E, which is 0, never lies in a
finite subcover. Later on we will see that using Heine-Borel theorem
requires this set to be closed in order to be compact, which it is
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not, since 0 R E. On the other hand E “ t1{n : n “ 1, 2, ¨ ¨ ¨ uY t0u
is compact.

It is easier to understand what compactness means if we try to
see how we can make a set non-compact. One obvious way to do
so is by making the set so large that no finite subcover contains it.
That is, make the set unbounded. Consider a set E “ tx P R : x ě
0u. The infimum 0 P E, but since the set is infinite in size, i.e.,
EM P R such that dpx, pq ă M @x P E for a fixed point p. This
set is trivially noncompact. On the other hand, consider the set
E “ pa, bq Ă R. Despite the finite ‘size’ of the interval (bounded
trivially by |b´ a|),the interval is not compact because it struggles
with an infinity of the second kind.

a b

This set has issues related to infinities of a different sort. No
matter how close you approach to the limit point a (or b), you never
reach there, as it is not in your set. In fact, pa, bq is topologically
similar to p´8,8q!
An important thing to note, which is often confused, is that every
open cover should have a finite subcover for a set to be compact. It
is harder to prove compactness, and easier to prove noncompact-
ness, as the latter requires one counter example of an open cover
not having a finite subcover. Similarly, simply finding one open
cover that has an open subcover leads to nothing. For instance,
recall that the metric space X is open (and also closed). So X
covers literally every subset of X! But that does not mean every
subset of X is compact, as compactness requires all open covers to
have a finite subcover.

Lemma 2.4.0.1. 1. Compact subsets of metric spaces are closed

2. Closed subsets of compact sets are compact
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Corollary 2.4.0.1.1. If F is a closed set and K Ă X a compact
set, then F XK is compact.

This also leads us naturally to the Heine-Borel Theorem. Recall
from the discussion above that to make a set compact, we need to
‘fix’ the two kinds of infinities we encountered. The first one is fixed
by making our set small enough for there to be even a possibility of
a finite (sub)cover, i.e., boundedness. The other fixes the existence
of limit points, which introduce infinities around them, i.e., closed
sets.

Theorem 2.4.0.2 (Heine-Borel Theorem). K Ă Rk is compact ô
K is closed and bounded. note that this is only for Euclidean
spaces.

Lemma 2.4.0.3. Closed subsets of compact sets are compact.

Lemma 2.4.0.4. Closed k´cells in realsk are compact.

Theorem 2.4.0.5 (Bolzano-Weierstrass Theorem). Let K Ă X be
a compact set, and E Ă K an infinite subset of K, them E has a
limit point in K.

Theorem 2.4.0.6 (Kantor Intersection Theorem). If Kn Ă X is
a sequence of nonempty compact sets such that Kn Ą Kn`1 for

n “ 1, 2, ¨ ¨ ¨ , then
8
Ş

i“1

Ki ‰ ∅.

Perfect Sets

Definition. A nonempty set P Ă X is a perfect set if P is closed
and all points P are limit points of P , or if P is closed and has no
isolated points.

Theorem 2.4.0.7 (Perfect sets are uncountable). If P Ă Rk, P ‰
∅ is a perfect set, then P is uncountable.
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Connected Sets

Two disjoint sets A,B Ă X are separated if sA X B ‰ ∅ and
A X sB ‰ ∅. We say that E is disconnected if DA,B such that
A,B ‰ ∅, A,B are separated, and E “ A Y B. Finally, a set
E Ă X is connected if it is not disconnected.
The concept of connectedness says that the set E should not be
breakable into two sets ‘far apart’. The notion of ‘far apart’ is
conveyed by the set being breakable into two open sets.

Theorem 2.4.0.8 (Connected sets in R). A set E Ă R is con-
nected iff it has the interval property: if x, y P E, then rx, ys P E
for some x ă y.

Lemma 2.4.0.9. If V Ă R is bounded above and V ‰ ∅, then
supV P sV .



Chapter 3

Sequences

A sequence in X is a mapping f : NÑ X. That is, a sequence is a
list that is numbered. The map is the relation between the entries
of the list and number of the entry on the list. We simply write
fp1q “ p1 or pn “ fpnq by omitting the map f and only denoting
the sequence by its terms. We often misuse the notation to denote
tpnu a sequence with terms tp1, p2, ¨ ¨ ¨ , pn, ¨ ¨ ¨ u which is the same
notation as the elements p1, p2,etc., but the two are different.

Definition. We say a sequence pn converges to some p P X if for
any ε ą 0, DNε P N such that dppn, pq ă ε if n ě Nε.

The definition of a convergent sequence is that it gets arbitrar-
ily close to the term p P X. This point p is called the limit of
the sequence. Note that this definition is equivalent to saying that
pn is convergent if pn P Nεppq, @n ě Nε. This clearly means that
there are infinite points of the sequence which lie in Nεppq. Note
that this property of a convergent sequence is often used to define
infinite sets, neighbourhoods, open and closed sets. This is also the
intuition behind the nomenclature of a ‘limit point’, i.e., the limit
point of the set has a sequence in the set whose limit is the point.

20
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Only finitely many points of a sequence tpnu lie outside any neigh-
bourhood around the limit. Actually, we even know how many
points would be outside, they would be points tp1, p2, ¨ ¨ ¨ , pNε

u.

Remark 3. R1. If a sequence pn Ñ p, then the limit p is unique.

R2. If a sequence pn is convergent, then it is bounded.

R3. Algebraic operations on Numeric Sequences: Consider two
sequences sn Ñ s and pn Ñ p,

R.2.a limnÑ8psn ` pnq “ s` p

R.2.b limnÑ8pcsnq “ cs

R.2.c limnÑ8psnpnq “ sp

R.2.d limnÑ8psn{pnq “ s{p if p ‰ 0

Sequences in Rk

Suppose txnu
8
n“1 P Rk such that xn “ tx1,n, x2,n, ¨ ¨ ¨ , xk,nu ñ

txi,nu is a sequence in R. These individual sequences are projec-
tions of the original sequence in Rk in the form of components
of txnu. Therefore, txnu

8
n“1 P Rk, xn Ñ a “ ta1, a2, ¨ ¨ ¨ , aku if

xi,n Ñ ai for any i “ 1, 2, ¨ ¨ ¨ , k.

3.1 Subsequences

Consider a sequence tpnu P X and some indices n1, n2, ¨ ¨ ¨ , nk, ¨ ¨ ¨ P
N such that they form an increasing sequence n1 ă n2 ă ¨ ¨ ¨ ă nk ă
¨ ¨ ¨ , then we can use the new increasing “sequence” of integers to
index terms out of pn. This newly drawn sequence of terms is a
subsequence denoted by tpnk

u8k“1.

Theorem 3.1.0.1. If tpnu is a sequence in X such that pn Ñ p
as nÑ8, then for any subsequence tpnk

u, pnk
Ñ8 as k Ñ8 as

well.
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Sequences in a compact set

(i) Let tpnu be a sequence in a compact set K Ă X then tpnu
has a convergent subsequence.

(ii) [Corollary of (i)] If tpnu is a bounded sequence in Rk, then
tpnu has a convergent subsequence. (Bolzano-Weierstrass
for Sequences)

3.2 Subsequential Limits

It often helps (how?) to look at a set of all the subsequences
of a sequence. This translates to the supremum and infimum
values of the set of all the limits points of a sequence. Note
that for a convergent sequence, this set should collapse to a single
point. Let us denote the set of all limit points of the sequence by
E˚ “ tp P X : pnk

Ñ pu for some subsequence tpnk
u, then the set

E˚ is a closed set ñ if p is a limit point of E˚, then p P E˚.

Note that this set need not even be countable, even though the
set of values taken by the sequence itself is countably infinite. E.g.,
the sequence. t1{1, 1{2, 2{2, 1{3, 2{3, 3{3, 1{4, 2{4, 3{4, 4{4, ¨ ¨ ¨ u is
forming the set of all rationals, but we can form subsequences out of
it to converge to any irrational number, so the set of susbequential
limits for the sequence is actually infinite.

3.3 Cauchy Sequences

Cauchy sequences generalizes the idea of convergent sequences. Re-
call that a convergent sequence is one where all the points (@n)
eventually (@n ě Nε) fall within an ε radius neighbourhood (Nεppq)
of the limit point p (@n ě Nε, pn P Nεppq). This is a strict demand
on the sequence pn, and Cauchy sequences are slightly more tol-
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erant of sequences that could not converge, but the terms of the
sequence itself come arbitrarily close to each other.

Definition. 1. [Cauchy sequence.] We say a sequence tpnu is
Cauchy if for any ε ą 0 DNε such that dppn, pmq ă ε@m,n ě
Nε.

2. [Tail of a sequence.] Let EN “ tpN , pN`1, ¨ ¨ ¨ , pN`k, ¨ ¨ ¨ u,
the EN is the “tail” of the sequence pn

3. [Diameter of a set.] For some metric subspace E Ă X, we
define the diameter as the “largest distance between any two
points” in the set, i.e., diam pEq “ sup tdpp, qq : p, q P Eu

Note:
tpnu is Cauchy ô diam pEnq Ñ 0 as n Ñ 8 ô diam pENε

q ď ε,
and Cauchy sequences are bounded.

Convergent sequence, in general, need us to know the limit p
apriori, in order to write the properties of the sequence. Cuachy
sequence, since not necessarily convergent, do not need us to know
the limit (which may or may not exist), and still comment upon
the properties of the sequence. Furthermore, if pn Ñ p,ñ tpnu
is Cauchy. But Cauchy sequences are not necessarily convergent.
E.g., let pn P Q be such that pn Ñ

?
2. Clearly, p “

?
2 R Q,

but tpnu is Cauchy in Q. In general, think of any sequence in
Kztpu Ă X where p is the limit of the sequence. The sequence
remains Cauchy, but no longer converges in its set.

Definition. We call a metric space X to be complete if every
Cauchy sequence in X is convergent.

Theorem 3.3.0.1. (i) If X is a compact set, then X is complete

(ii) [Corollary] Rk is complete

Therefore,
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C1. Cauchy sequences in complete metric spaces are convergent
(7 in a complete metric all Cauchy sequences converge)

C2. Compact metric spaces are complete

C3. Euclidean spaces Rk are compact, therefore complete

C4. ñ Cauchy sequences in Rk are convergent.

Monotone Sequences

In order to define monotonicity of sequences, we need an ordered
subset of a metric space. The unsurprisingly banal definition of
monotonicity that thus follows is that tpnu is monotonically in-
creasing if sn ď sn`1 @n P N and monotonically decreasing if
sn ě sn`1 @n P N. Obviously, a sequence could monotonically
increase (decrease) to (minus) infinity. If we have a way to bound
the monotone sequence, it would be convergent.

Therefore, a monotone sequence tsnu is convergent ô tsnu is
bounded. Further, we will use the following shorthand: tsnu Õ if
tsnu is increasing, and tsnu Œ if it is a decreasing sequence.

3.4 Subsequential Limits, back to: lim sup and
lim inf

The concept of subsequential limits is introduced so as to discuss
the properties of all sequences, and not only convergent ones. A
subsequential limit is defined as the limit of a subsequence snk

from
the sequence sn. Collecting all such subsequential limts gives us
a set E “ ts : snk

Ñ s for all subsequences snk
of snu. For con-

vergent sequences, all subsequences have to converge to the same
point, so the set E collapses to a single point.
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Upper & Lower limits of sequences

For a sequence in R we say:

• sn Ñ 8, if for any M P R DNM P N such that sn ą M @n ě
NM

• sn Ñ ´8, if for any M P R DNM P N such that sn ăM @n ď
NM

Now consider sequences in the extended reals sR “ RYt8,´8u.
Let us form a set of all subsequential limits same as above, but this
time in sR. We define lim inf and lim sup for E “ tx P sR : sn Ñ xu

• s˚ fi lim sup
nÑ8

sn “ supE P sR

• s˚ fi lim inf
nÑ8

sn “ inf E P sR

Properties of lim sup

Let s˚ “ lim sup sn “ supE, then

P(ls)1. There is a subsequence which converges to s˚, i.e., s˚ P E ”
Dsnk

Ñ s˚

P(ls)2. If s˚ ă x, then DN such that sN ă x@n ě N or, there are
finitely many n’s such that sn ě x

P(ls)3. s˚ is unique

P(ls)4. If sn ď tn @n ě n0, then

(i) lim sup sn ď lim sup tn

(ii) lim inf sn ď lim inf tn

A particular case of above is if sn ďM @n ě n0 ñ lim sup sn ď
M
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3.5 Series

For a sequence an in R, we can define a new sequence sn “
řn
k“0 ak,

i.e., the n-th term of a series is the n-th partial sum of a sequence.
This new sequence is called a series.

Therefore, similar convergence criteria hold for a series as well.
For instance, the Cauchy criterion for series would be as follows.
řn
k“0 ak is convergent ô for any ε ą 0DNε such that |

řm
k“n ak| ă ε

for all m,n ą Nε,m ą n.

Definition. We say
ř

an is absolutely convergent if
ř

|ak| ă 8.

Absolute convergence is a stronger criterion and if a series
ř

an
converges absolutely ñ the series

ř

an converges. Note that the
converse need not be true, e.g, sn “

řn
p´1qn.

Convergence tests for series.

Comparison Test.

Comparison test compares the given series in question with another
series whose convergence (divergence) is known to us. Suppose
ř

an,
ř

cn are two series and cn ě 0, then

(a) if |an| ď cn for all n ě n0 and the upper series converges
ř

cn ă 8, then
ř

an is convergent.

(b) if |an| ě cn for all n ě n0 and the upper series converges
ř

cn “ 8, then
ř

an is divergent.

An interesting result for series convergence is the Cauchy con-
densation test which states that for an increasing, positive se-
quence an, such that an ě an´1 ě 0,@n ě 0,

ř

an ă 8 ô
ř

2ka2k ă 8. The intuition behind the condensation test is to split
each partial sum and bound it by sums of terms as multiples of 2k.
For instance, s7 “ a1`¨ ¨ ¨`a7 ď a1`pa2`a2q`pa4`a4`a4`a4q “
a1 ` 2a2 ` 4a4, etc.
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Root and Ratio tests.

Theorem 3.5.0.1 (Root Test). Let n ě 0 and let α “ lim supnÑ8
n
?
an,

then

(a) if α ă 1 ñ
ř

an ă 8.

(b) if α ą 1 ñ
ř

an “ 8.

(c) if α “ 1, the root test is inconclusive.

Theorem 3.5.0.2 (Ratio Test). For a series with terms an ‰ 0,

(a) if lim supnÑ8

∣∣∣an`1

an

∣∣∣ ă 1 ñ
ř

an ă 8

(b) if
∣∣∣an`1

an

∣∣∣ ě 1 ñ
ř

an “ 8

Remark 4. Let cn ą 0, then
lim infnÑ8

cn`1cn
ď

lim infnÑ8 n
?
cn ď lim supnÑ8

n
?
cn ď lim supnÑ8

cn`1

cn

That is, the root test provides a tighter bound, but is numeri-
cally harder than the ratio test. And if the ratio test is satisfied,
root test is automatically satisfied as well.

3.6 Power Series.

For some z P C, we call the expression
ř8

n“0 cnz
n a power series.

Naturally, the convergence of
ř

cnz
n depends on where z lies in

the complex plane. We define by R “ 1
α the radius of convergence

of the power series
ř

cnz
n, where α “ lim sup n

a

|cn|.

Theorem 3.6.0.1. For R “ 1
α , R P r0,8s

(i) if |z| ă Rñ
ř

cnz
n converges absolutely.

(ii) if |z| ą Rñ
ř

cnz
n diverges.

(iii) if |z| ą R, the test is inconclusive.
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Continuity of Functions

4.1 Limit of a function.

Let X and Y be two metric spaces equipped with some distance
metrics dX , dY . Let E Ă Y and f : E Ñ Y , then we denote
the limit of the function f as it approaches the point p P X as
limxÑp fpxq and define it as: fpxq Ñ q as xÑ p ” limxÑp fpxq “
q, if for any ε ą 0 Dδε ą 0 such that dY pfpxq, qq ă ε if 0 ă

dXpx, pq ă δε, x P E. Note that speaking of the limit of a function
at an isolated point (i.e., if p P E but p R E1) is irrelevant.

E

X Y

p

Nδεppq

q

Nεpqq

f : E Ñ X

Figure 4.1: Pictorial mapping of neighbourhood of p P E to q P Y
under f

28
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This definition is represented in Fig. 4.1 where Nδεppq gets
mapped to Nεpqq. Since ε is arbitrary, the neighbourhood around
point q can be made arbitrarily small, and still one would be able
to find a corresponding point x in the δε neighbourhood of p. Note
that there could be a hole in the neighbourhood Nε at fppq. That
is, for the definition of the limit limxÑp fpxq, the value of the func-
tion at p is irrelevant.

An alternate sequential definition of the limit of a function
at a point uses the preservation of sequential limits under func-
tional mappings. For any sequence pn in E, if pn Ñ p, pn ‰ p
holds then fppnq Ñ q ô limxÑp fpxq “ q. Note that similar
definitions of limit hold for functions in higher dimensions. That
is, limxÑp fpxq “ q “ pq1, ¨ ¨ ¨ , qkq ô limxÑp fipxq “ qi for i “
1, 2, ¨ ¨ ¨ , k.

The sequential definition of limits of a function is very useful
since it helps us to borrow the important results of sequence con-
vergence algebra, and use them to automatically get limit algebra
results. These limit algebra results are as follows. If limxÑp fpxq,
limxÑp gpxq exist, then

(i) limxÑp αfpxq ` βgpxq “ α limxÑp fpxq ` β limxÑp gpxq

(ii) limxÑp fpxq ¨ gpxq “ limxÑp fpxq ¨ limxÑp gpxq

(iii) limxÑp
fpxq

gpxq
“

limxÑp fpxq

limxÑp gpxq
provided limxÑp gpxq ‰ 0 and gpxq ‰ 0.

Limits at infinity.

Recall that sR “ RY t´8,`8u. We can define neighbourhoods in
sR as px ´ r, x ` rq if x P R, pa,`8q when x “ `8, and p´8, bq
when x “ ´8 (a, b P R). If E Ă R, then `8 is a limit point of
E iff E is unbounded above, and ´8 is a limit point if E iff E
is unbounded below. Now if `8 P E1, f : E Ñ R, we can talk
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about limxÑ8 fpxq “ L P R ô |fpxq ´ L| ă ε if x ą aε, x P
E, limxÑa fpxq “ `8 if a P E1.

However, one has to be aware of indeterminate forms such as
8´8, 0 ¨ p˘8q,˘8{ ˘ 8 when applying algebraic properties to
limits.

4.2 Continuity of a function.

Using the definition of limits of a function, we can now define what
it means for a function to be continuous at a point. A function
f : E Ñ Y is continuous at a point p if for any ε ą 0, Dδε ą 0
such that dY pfpxq, fppqq ă ε if dXpx, pq ă δε and x P E. Or,
f pNδεppq X Eq Ă Nεpfppqq. Comparing this with the definition of
a limit, we find one key difference. For the definition of a limit, the
point p P E1 is a limit point.

This has two consequences. For some f : E Ñ Y and p P E

1. If p P E1 then if f is continuous at pô limxÑ pfpxq “ fppq

2. If p R E1, or p is an isolated point, then any function is
continuous at p

Continuity of Compositions.

Suppose a P A Ă X, b P B Ă Y . Further suppose f : A Ñ

Y, fpAq Ă B and g : B Ñ Z. If we define g ˝fpxq “ gpfpxqq, x P A,
then g ˝ f : A Ñ Z, then the continuity of f at a and g at fpxq
implies the continuity of g ˝ f at a. This is a consequence of the
sequential characterization of continuity.

Global Continuity Theorem.

Global continuity theorem states that for continuous functions, the
pre-image of any open (closed) set is open (closed) [see Fig. 4.2].
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Theorem 4.2.0.1 (Global Continuity Theorem.). A function f :
E Ñ Y is continuous ô for any open set V Ă Y, f´1pV q is also
open.

As a consequence, the pre-image of a closed set is also closed un-
der continuous functions since if V pf´1pV qq is open, V cpf´1pV cq “
f´1pV cqcq is closed.

X Y

V

f´1pV q

Figure 4.2: Pre-image of an open set under a continuous function

4.3 Compactness and Continuity.

Compactness is preserved by continuous functions. That is, if X is
compact metric space and f : X Ñ Y is continuous, then fpXq is
also compact. This is a consequence of global continuity theorem
applied to the definition of compactness (finite open sub-cover for
any cover of the set fpXq).

Continuity of inverse.

If X is compact and f : X Ñ Y continuous and invertible, then its
inverse f´1 : Y Ñ X is also continuous.
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The continuity of inverse functions can fail for non-compact
sets. For example, f : r0, 2πq Ñ R2 be defines as fptq “ pcos t, sin tq.
The continuity of this function breaks at p1, 0q P R2. f´1p1, 0q “ 0,
and pcos 1{n,´ sin 1{nq Ñ p1, 0q as nÑ8, but, f´1

`

cos 1
n ,´ sin 1

n

˘

“

2π ´ 1
n “ 2π.

Euclidean spaces and continuity.

If X is compact and f : X Ñ Rk, then f is bounded. That is,
DM ą 0 such that |fpxq| ďM @x P X.

Remark 5. A special case arises when f maps to reals, i.e., f :
X Ñ R. If f is continuous and X compact, then sup and inf
of f are attained in X. That is, Dx˚, x˚ P X such that fpx˚q “
infxPX fpxq “ m and fpx˚q “ supxPX fpxq “M .

4.4 Uniform Continuity.

Uniform continuity is a stronger notion which says that the neigh-
bourhood of radius δε around a point x gets mapped to a neigh-
bourhood of radius ε. Further, there exists δε such that the same
δε works for all points x P X.

That is, for any ε ą 0, Dδε ą 0 such that dY pfppq, fpxqq ă ε if
dXpp, xq ă δε for any x P X.

Theorem 4.4.0.1. If X is compact, f : X Ñ Y continuous ñ f :
X Ñ Y is uniformly continuous.

4.5 Continuity and Connectedness.

Continuity preserves connctedness. Suppose f : X Ñ Y is con-
tinuous and E Ă X is connected, then fpEq Ă Y is connected as
well.
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This is not hard to visualize as shown in Fig. 4.3. Suppose
the image fpEq of a connected set E is disconnected. This would
result in a contradiction of f being discontinuous since there would
be some points for which the pre-image of some ε neighbourhood
does not lie in the connected set E. The only way f would be
continuous, is for E to be disconnected too! This contradicts with
the assumption that E is connected.

X Y

(suppose)

f

E
fpEq

Figure 4.3: Pre-image of an open set under a continuous function

This is a general case of the Intermediate Value Theorem. The
connectedness of f : X Ñ R automatically implies that the image
fpXq has to be connected. That is, fpXq has interval property.
This naturally proves the intermediate value theorem for functions
mapping to R, since the only connected sets in R are intervals.

4.6 Discontinuities.

For functions mapping to , there are two directions to approach
a point p P ra, bs. When approaching from the left, we call it a
left-hand limit and when approaching from the right, we call it the
right-hand limit of the function.
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That is, the left handed limit is
fpx´q “ limpÑx

păx
fppq “ limpÑx f

∣∣
pa,xq

pxq “ limpÑx´ fppq.

Similarly, the right-handed limit of a function an be defined as
fpx`q “ limpÑx

pąx
fppq “ limpÑx f

∣∣
px,bq

pxq “ limpÑx` fppq.

This allows us to understand the concept of continuity for real
functions in terms of left/right-handed limits. If f : ra, bs Ñ R and
c P ra, bs then f is continuous ô fpc`q “ fpc´q “ fpcq.

If fpc`q, fpc´q exist but are not equal, we have a discontinuity
of the first kind, or a simple discontinuity. For example, step func-
tion: fpxq “ 1, x ě 0, 0 otherwise. In case fpc`q or fpc´q do not
exist, it is called a discontinuity of the second kind. For example,
fpxq “ sin 1{x, x ‰ 0, fp0q “ 0. Here both fp0´q, fp0`q do not
exist.

Monotone Functions.

For a function f : ra, bs Ñ R, we say f is monotone increasing on
ra, bs if fpxq ď fpyq if x ď y;x, y P pa, bq. It is strictly monotone
increasing if fpxq ă fpyq holds.

Monotone functions are interesting because they can not have
discontinuities of the second kind. That is, left-hand and right-
hand limits always exist for monotone functions.

Further, if f : pa, bq Ñ R is monotonically increasing, then
for any c P pa, bq, supaăxăc fpxq “ fpc´q ď fpcq ď fpc`q “
infcăxăb fpxq. As a corollary, monotone functions can only have
discontinuities of the first kind.

Remark 6. If f is monotone, it can have at most countably many
points of discontinuities.
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The Riemann-Stieljes
Integral

Suppose f : pa, bq Ñ R is bounded, we want to define a quantity
şb

a
f or

şb

a
fpxqdx as the signed area under the graph of f .

In order to do so, we introduce the concept of partitions. We
say that P “ tx1, ¨ ¨ ¨ , xNu is a partition of ra, bs if a “ x1 ă x1 ă
¨ ¨ ¨ ă xN “ b. We say a partition P to be “finer” than a partition
Q, P ă Q, if P Ą Q. Clearly, refinement is a transitive property,
i.e., if P ă Q and Q ă R, then P ă R (P finer than Q, Q finer than
Rñ P finer than R). Also, for two partitions P1, P2, D a common
refinement Q (think of the trivial example of Q “ P1 Y P2).

5.1 Riemann integral.

Lower and Upper sums.

Let us define ∆xi “ xi ´ xi´1, and mi “ infrxi´1,xis f , Mi “

sup rxi´1, xisf . Then we can define the lower/upper sums for func-

35
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tion f , over a partition P as:

LpP, fq :“
N
ÿ

i“1

mi∆xi “: lower sum

LpP, fq :“
N
ÿ

i“1

Mi∆xi “: upper sum

(5.1)

This is shown for an arbitrary partition in Fig. 5.1.

x1 x2 x3 xi´1 xi xN´1 xN¨ ¨ ¨

mi

Mi

Figure 5.1: Upper/lower sums for a function and a given partition

Upper and Lower integrals.

Note that every partition would have a different upper/lower sum,
since if clearly depends on the partition P . In order to take all
partitions into account, we define the upper/lower integrals as:

ż b

a

f “ sup
P
LpP, fq “: lower integral

ż b

a

f “ inf
P
UpP, fq “: upper integral

(5.2)
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Definition. We say a function f is Riemann integrable on ra, bs

if
şb

a
f “

şb

a
f . Then we define

şb

a
f :“

şb

a
f “

şb

a
f .

5.2 Riemann-Stieljes Integral.

Let f : ra, bs Ñ R be bounded, and α : ra, bs Ñ R be an increasing
function. Let P be a partition of ra, bs and ∆αi “ αpxiq´αpxi´1q.
Then we can define upper and lower sums with respect to α as,

UpP, f, αq :“
N
ÿ

i“1

Mi∆αi

LpP, f, αq :“
N
ÿ

i“1

mi∆αi

(5.3)

Similarly, we define upper/lower integrals with respect to α as,

ż b

a

fdα “ sup
P
LpP, f, αq

ż b

a

fdα “ inf
P
UpP, f, αq

(5.4)

Definition. We say a function f is Riemann integrable on ra, bs

w.r.t. α if
şb

a
fdα “

şb

a
fdα. Then we define

şb

a
f :“

şb

a
fdα “

şb

a
fdα.

5.3 Riemann’s Integrability Criterion.

The refinement property of partitions allows for LpP, f, αq ď LpP˚, f, αq ď
UpP˚, f, αq ď UpP, f, αq if P˚ ă P . Note that upper and lower
sums of always finer partitions would always lie in-between the up-
per and lower sums over other partitions. Using this we can come
up with a criterion for integrability.
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Theorem 5.3.0.1. We denote a function f is integrable in the
sense of Riemann w.r.t. α as f P Rpαq.
If f P Rpαq ô for any ε, D a partition Pε of ra, bs such that

UpPε, f, αq ´ LpPε, f, αq “
řN
i“1pMi ´miq∆αi ă ε.

5.4 Integrability theorems.

Below are some useful properties on the integrability of functions.

1. If f : ra, bs Ñ R is continuous ñ f P Rpαq for any α increas-
ing on ra, bs.

2. If f is monotone and α continuous on ra, bs ñ f P Rpαq.

3. If f is continuous everywhere on ra, bs except at x “ c1, ¨ ¨ ¨ , cN
and bounded on ra, bs, and α continuous at x “ c1, ¨ ¨ ¨ , cN ñ
f P Rpαq.
Corollary: If f P Rpαq, then modifying the function at finitely
many does not affect its integrability.

4. If f : ra, bs Ñ rm,M s is bounded, α increasing, and ϕrm,M s Ñ
R some continuous function, then the composition ϕ ˝ f “
ϕpfq P Rpαq.

5. Algebraic properties of integrals:
If f1, f2 P Rpαq on ra, bs, then the following hold

(5a)
şb

a
f1dα`

şb

a
f2dα “

şb

a
pf1 ` f2qdα

(5b)
şb

a
pcf1qdα “ c

şb

a
f1dα for some c P R

(5c) f1 ¨ f2 P Rpαq
(5d) If f P Rpα1q, f P Rpα2q for α1, α2 monotone increasing

on ra, bs, then f P Rpα1 ` α2q, i.e.,
şb

a
fdpα1 ` α2q “

şb

a
fdα1

şb

a
fdα2
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(5e) If f P Rpαq ñ f P Rpcαq, where
şb

a
fdpcαq “ c

şb

a
fdα for some c ě 0

(5f) If f P Rpαq on ra, bs, and a ă c ă b, then f P Rpαq on

ra, cs and rc, bs, where
şb

c
fdα “

şc

a
fdα`

şb

c
fdα

6. If m ď f ď M on ra, bs and f P Rpαq ñ mrαpbq ´ αpaqs ď
şb

a
fdα ďM rαpbq ´ αpaqs

7. If f P Rpαq ñ |f | P Rpαq.
Further,

∣∣∣şba fdα∣∣∣ ď şb

a
|f | dα

8. Monotonicity of Integral.

If f1pxq ď f2pxq @x P ra, bs ñ
şb

a
f1dα ď

şb

a
f2dα

Riemann-Stieljes Integral as Riemann Integral.

We say a function f : ra, bs Ñ R is differentiable at c P pa, bq if

f 1pcq :“ lim
xÑc

fpxq ´ fpcq

x´ c
“ lim
hÑ0

fpx` hq ´ fpxq

h

A natural consequence is the Mean-Value theorem for contin-
uous and differentiable functions. Let f be continuous on ra, bs
and follow the equation above. Then Dc P pa, bq such that f 1pcq “
fpbq ´ fpaq

b´ a
.

Theorem 5.4.0.1. Suppose α : ra, bs Ñ R is an increasing, contin-
uous function on ra, bs, and differentiable on pa, bq. Further assume
α1 P R, then if f : ra, bs Ñ R is bounded then f P Rpαq ô fα1 P R,
i.e.,

ż b

a

fdα “

ż b

a

fα1dx
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Change of variables.

Let f : ra, bs Ñ R, α Õ on ra, bs. Suppose there is a function
ϕ : rA,Bs Ñ ra, bs that is continuous, invertible, and ϕpAq “
a, ϕpbq “ b, then

f ˝ ϕ P Rpβq, β “ α ˝ ϕô f P Rpαq and

ż B

A

f ˝ ϕdβ “

ż b

a

fdα

Theorem 5.4.0.2 (Fundamental Theorem of Calculus [FTC). .]
Suppose f : ra, bs Ñ R, f P R and F : ra, bs Ñ R is such that F is
continuous on ra, bs, and F 1pxq “ fpxq on pa, bq. Then F is called
the anti-derivative of f , i.e.,

ż b

a

fpxqdx “ F pbq ´ F paq

If f is continuous on ra, bs, F pxq “
şx

a
fdx, x P ra, bs.

Integration by parts.

An important consequence of the FTC is the property of integration
by parts. If f, g P R and F,G are the respective anti-derivatives,
then

ż b

a

Fgdx “ F pbqGpbq ´ F paqGpaq ´

ż b

a

Gfdx

”

ż b

a

FG1dx “ FG
∣∣∣b
a
´

ż b

a

Gf 1dx

The above can be proved by applying the FTC on FG so that
pFGq1 “ F 1G` FG1 ñ FG is the anti-derivative of Fg ` fG.



Chapter 6

Sequences & Series of
Functions

For a metric space X and a sequence of functions fn : X Ñ R,
we want to define what it means for the sequence to ‘approach’ a
function, i.e., what is meant by fn Ñ f (or

ř8

n“1 fn “ f) on X.

6.1 Point-wise Convergence.

We say fn Ñ f point-wise on E Ă X if fnpxq Ñ fpxq @x P E.
Similarly,

ř

fn Ñ f ô
ř

fnpxq Ñ fpxq @x P E.
This definition is intuitive, however, has little use because of

several drawbacks.

Point-wise convergence destroys continuity:

Let fnpxq “ xn, x P r0, 1s. Note that fnpxq Ñ 0, x P r0, 1q and
fp1q “ 1. A graphical proof of this is shown in Fig. 6.1.

41
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fnpxq “ xn

Ñ

f1

f2

fn

. . .

fpxq

Figure 6.1: fn’s are continuous @n but their limit is not

Point-wise convergence destroys integral:

Let fnpxq “ p2n` 2qxp1´ x2qn on r0, 1s and fnp0q “ fnp1q “ 0.

Ñ

fnpxq fpxq

f1

f2

fn

Figure 6.2: fn’s are continuous @n but their limit is not

Note from Fig. 6.2 that fn Ñ 0 ñ
ş1

0
f “ 0, but

ş1

0
f “ 1.

Therefore, point-wise convergence does not preserve the value of
the integral.

Point-wise convergence destroys integrability:

Let fN pxq “ 1 if x “ m{n, n ď N and 0 otherwise. Since fN
has finitely many discontinuities on r0, 1s ñ fN P R. However,
limNÑ8fNÑ Dirichlet’s function, which is not integrable.
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Therefore, we need to come up with a better criterion for con-
vergence of sequences of functions that preserve these properties.

6.2 Uniform Convergence.

Definition (Uniform Convergence). We say fn Ñ f uniformly on
E Ă X if for any ε ą 0 DNε ą 0 such that |fnpxq ´ fpxq| ă ε if
n ě Nε for any x P E.

Definition (Uniform norm). fn Ñ f uniformly on E ô supE |fn ´ f |Ñ
0. Then we can define the uniform norm as ‖fn ´ f‖ :“ supE |fn ´ f |.

In other words, we claim uniform convergence w.r.t. to this
newly defined distance approaching zero.

Cauchy criterion for Uniform Convergence.

fn is a uniformly convergent sequence of functions on E if for any
ε ą 0, DNε ą 0 such that |fnpxq ´ fmpxq| ă ε if n,m ą Nε, @x P E.

Similarly, for series convergence,
ř

fnpxq converges uniformly
on E ô for any ε ą 0, DNε ą 0 such that |

řm
k“n fkpxq| ď ε if

m ě n ě Nε.

Theorem 6.2.0.1 (Weierstrass M-test). Suppose DMn ě 0 such
that

ř8

0 Mn is finite and |fxpxq| ď Mn, n ě n0 @x P E ñ
ř

fnpxq
converges uniformly on E.

Uniform convergence & continuity.

Let E Ă X and c a limit point of E. Let fn : E Ñ R and let
An “ limxÑc fnpxq exist. If fn Ñ f uniformly on E, then A “

limxÑc fpxq exists and A “ limnÑ8An, i.e.,

lim
nÑ8

lim
xÑc

fnpxq
loooomoooon

An

“ lim
xÑc

lim
nÑ8

fnpxq
looooomooooon

fpxq
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Remark 7. This swapping of limits is allowed only for uniform
convergence. As we saw in the previous section, point-wise conver-
gence destroys preservation of limits.
Corollary: If fn Ñ f uniformly on E and fn’s are continuous on
E ñ fpxq is continuous on E.

Uniform convergence & integrals.

Let fn : ra, bs Ñ R, fn P Rpαq w.r.t some α on ra, bs. If fn Ñ f
uniformly on ra, bs ñ f P Rpαq on ra, bs and

ż b

a

fdα “ lim
nÑ8

ż b

a

fndα

Uniform convergence & differentiation.

Suppose fn : pa, bq Ñ R be differentiable on pa, bq and if fn Ñ f
uniformly, then

lim
nÑ8

f 1npxq “
´

lim
nÑ8

fnpxq
¯1

6.3 Equicontinuous Families.

6.4 Stone-Weierstrass theorem.


